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Abstract. We study kaonic hydrogen, the bound K−p state AKp. Within a quantum field theoretic and rel-
ativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen
in terms of the amplitude of K−p scattering for arbitrary relative momenta. The amplitude of low-energy
K−p scattering near threshold is defined by the contributions of three resonances Λ(1405), Λ(1800) and
Σ0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K−p scat-
tering fit experimental data on the near-threshold behaviour of the cross-sections and the experimental
data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation
Theory) for the calculation of the partial width of the radiative decay of pionic hydrogen Aπp → n+γ and
the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data.
We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to the calculation of the
partial widths of radiative decays of kaonic hydrogen AKp → Λ0 + γ and AKp → Σ0 + γ. We show that
the contribution of these decays to the width of the energy level of the ground state of kaonic hydrogen is
less than 1%.

PACS. 11.10.Ef Lagrangian and Hamiltonian approach – 13.75.Gx Pion-baryon interactions – 21.10.-k
Properties of nuclei; nuclear energy levels – 36.10.-k Exotic atoms and molecules (containing mesons,
muons, and other unusual particles)

1 Introduction

Kaonic hydrogen AKp is an analogy of hydrogen with an
electron replaced by the K−-meson. The relative stability
of kaonic hydrogen is fully due to Coulomb forces [1–8].
The Bohr radius of kaonic hydrogen is

aB =
1
µα

=
1
α

( 1
mK−

+
1
mp

)
= 83.594 fm, (1.1)

where µ = mK−mp/(mK− + mp) = 323.478MeV is a
reduced mass of the K−p system, calculated at mK− =
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493.677MeV andmp = 938.272MeV [9], and α = e2/�c =
1/137.036 is the fine-structure constant [9]. Below we use
the units � = c = 1, then α = e2 = 1/137.036. Since the
Bohr radius of kaonic hydrogen is much greater than the
range of strong low-energy interactions Rstr ∼ 1/mπ− =
1.414 fm, the strong low-energy interactions can be taken
into account perturbatively [1–8].

According to Deser, Goldberger, Baumann and
Thirring [1] the energy level displacement of the ground
state of kaonic hydrogen can be defined in terms of the
S-wave amplitude fK

−p
0 (Q) of low-energy K−p scattering

as follows:

−ε1s + i Γ1s

2
=
2π
µ
fK

−p
0 (0) |Ψ1s(0)|2, (1.2)

where Ψ1s(0) = 1/
√
πa3

B is the wave function of the
ground state of kaonic hydrogen at the origin and fK

−p
0 (0)

is the amplitude of K−p scattering in the S-wave state,
calculated at zero relative momentum Q = 0 of the
K−p pair. The DGBT formula can be rewritten in the
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equivalent form

−ε1s + i Γ1s

2
= 2α3µ2 fK

−p
0 (0), (1.3)

where 2α3µ2 = 412.124 eV fm−1 and fK
−p

0 (0) is measured
in fm. The formula (1.3) is used by experimentalists for
the analysis of experimental data on the energy level dis-
placement of the ground state of kaonic hydrogen [10–13].

For non-zero relative momentum Q the amplitude
fK

−p
0 (Q) is defined by

fK
−p

0 (Q) =
1
2iQ

(
ηK

−p
0 (Q) e 2iδK−p

0 (Q) − 1
)
, (1.4)

where ηK
−p

0 (Q) and δK
−p

0 (Q) are the inelasticity and the
phase shift of the reaction K− + p → K− + p, respec-
tively. At relative momentum zero, Q = 0, the inelastic-
ity and the phase shift are equal to ηK

−p
0 (0) = 1 and

δK
−p

0 (0) = 0. For Q → 0 the phase shift behaves as
δK

−p
0 (Q) = aK

−p
0 Q + O(Q2), where aK

−p
0 is the S-wave

scattering length of K−p scattering.
The real part of fK

−p
0 (0) is related to aK

−p
0 as

Re fK−p
0 (0) = aK

−p
0 =

1
2
(a0

0 + a
1
0), (1.5)

where a0
0 and a

1
0 are the S-wave scattering lengths a

I
0 with

isospin I = 0 and I = 1, respectively.
Due to the optical theorem the imaginary part of the

amplitude fK
−p

0 (0) is related to the total cross-section
σK

−p
0 (Q) for K−p scattering in the S-wave state:

ImfK
−p

0 (0) = lim
Q→0

Q

4π
σK

−p
0 (Q)

=
1
2
lim
Q→0

1
Q
(1− ηK

−p
0 (Q) cos 2δK

−p
0 (Q)). (1.6)

The r.h.s. of (1.6) can be transcribed into the form

ImfK
−p

0 (0) = −1
2
dηK

−p
0 (Q)
dQ

∣∣∣
Q=0

. (1.7)

Hence, according to the DGBT formula the energy level
displacement of the ground state of kaonic hydrogen is
defined by

ε1s = −2α3µ2 Re fK−p
0 (0) = −2α3µ2 aK

−p
0 ,

Γ1s = 4α3µ2 ImfK
−p

0 (0) = −2α3µ2 dη
K−p
0 (Q)
dQ

∣∣∣
Q=0

.

(1.8)

The recent preliminary experimental data on the energy
level displacement of the ground state of kaonic hydrogen
obtained by the DEAR Collaboration [13] read

−εexp
1s + i

Γ exp
1s

2
= (−183± 62) + i (106± 69) eV. (1.9)

In this paper we give i) a model-independent, quantum
field theoretic and relativistic covariant derivation of the
energy level displacement of the ground state of kaonic hy-
drogen and ii) a theoretical modeling of the amplitude of
K−p scattering in the S-wave state fK

−p
0 (Q) near thresh-

old of the K−p pair Q ≈ 0, fitting well experimental data
(1.9) by the DEAR Collaboration [13].

The paper is organized as follows. In sect. 2 we write
down the wave function of the ground state of kaonic hy-
drogen within the quantum field theoretic and relativis-
tic covariant approach developed in [7,8] (see also [14]).
In sect. 3 we derive the energy level displacement of the
ground state of kaonic hydrogen in a model-independent
way. In sect. 4 we describe the amplitude of K−p scatter-
ing near threshold by the contributions of the resonances
Λ(1405), Λ(1800) and Σ(1750). The obtained amplitude
of K−p scattering we use for the calculation of the energy
level displacement of the ground state of kaonic hydro-
gen. In sect. 5 we calculate the contribution of the elastic
background to the amplitude of low-energy K−p scatter-
ing. We show that the theoretical results fit well prelimi-
nary experimental data by the DEAR Collaboration [13].
In sect. 6 we calculate the partial widths of the radiative
decay channels of kaonic hydrogen AKp → Λ0 + γ and
AKp → Σ0 + γ [15]. First, we develop technique and me-
thodics, based on the soft-pion(kaon) technique, for the
calculation of the partial width of the decay Aπp → n+ γ
of pionic hydrogen in the ground state. We calculate the
Panofsky ratio, 1/P = Γ (Aπp → n + γ)/Γ ((Aπp →
n + π0) = 0.681 ± 0.048, in agreement with the experi-
mental value 1/P = 0.647± 0.004 [16]. The application of
this technique to the calculation of the partial widths of
the decays AKp → Λ0 + γ and AKp → Σ0 + γ shows that
the contribution of these decay channels to the width of
the energy level of the ground state of kaonic hydrogen is
less than 1%. In the conclusion we discuss the obtained
results. We show that our approach to the description of
low-energy K−p scattering is consistent with the experi-
mental data by the DEAR Collaboration [13]. In the ap-
pendix we calculate the elastic background of the S-wave
elastic K−p scattering near threshold within the Effective
quark model with chiral U(3)× U(3) symmetry [17–19].

2 Ground-state wave function of kaonic
hydrogen

The wave function of kaonic hydrogen in the ground state
we define as [7,8,20,21]

|A(1s)
Kp (!P , σp)〉 =

1
(2π)3

∫
d3kK−√
2EK−(!kK−)

d3kp√
2Ep(!kp)

× δ(3)(!P − !kK− − !kp)
√
2E(1s)

A (!kK− + !kp)

×Φ1s(!kK−)|K−(!kK−)p(!kp, σp)〉, (2.1)

where E(1s)
A (!P ) =

√
M

(1s)
A

2
+ !P 2 and !P are total en-

ergy and momentum of kaonic hydrogen, respectively,
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M
(1s)
A = mp + mK− + E1s and E1s = −8613 eV are

mass and binding energy of kaonic hydrogen in the ground
bound state, respectively, σp is a polarization of the pro-
ton. Then, Φ1s(!kK−) is the wave function of the ground
state in the momentum representation normalized by∫

d3k

(2π)3
|Φ1s(!k )|2 = 1. (2.2)

The wave function |K−(!kK−)p(!kp, σp)〉 we define as [7,8,
20,21]

|K−(!kK−)p(!kp, σp)〉 = c†K−(!kK−)a†p(!kp, σp)|0〉, (2.3)

where c†K−(!kK−) and a†p(!kp, σp) are operators of creation
of the K−-meson with momentum !kK− and the proton
with momentum !kp and polarization σp = ±1/2. They
satisfy standard relativistic covariant commutation and
anticommutation relations [7,20]. The wave function (2.1)
is normalized by

〈A(1s)
Kp (!P

′, σ ′
p)|A(1s)

Kp (!P , σp)〉 =

(2π)3 2E(1s)
A (!P ) δ(3)(!P ′− !P ) δσ ′

pσp

∫
d3k

(2π)3
|Φ1s(!k |2=

(2π)3 2E(1s)
A (!P ) δ(3)(!P ′ − !P ) δσ ′

pσp
. (2.4)

This is a relativistic covariant normalization of the wave
function.

The wave function (2.1) we will apply to the calcula-
tion of the energy level displacement of the ground state
of kaonic hydrogen within a quantum field theoretic and
relativistic covariant approach.

3 Energy level displacement of the ground
state

According to [7,8,20], the energy level displacement of the
ground state of kaonic hydrogen is defined by

− ε1s+ i Γ1s

2
= lim

T,V→∞
〈A(1s)

Kp (!P , σp)|T|A(1s)
Kp (!P , σp)〉

2E(1s)
A (!P )V T

∣∣∣
�P=0

,

(3.1)
where TV is a 4-dimensional volume defined by
(2π)4δ(4)(0) = TV [20] and T is the T -matrix obeying
the unitary condition [20,21]

T − T
† = iT†

T. (3.2)

Using the wave function (2.1) we reduce the r.h.s. of (3.1)
to the form

− ε1s + i Γ1s

2
=

1
4mK−mp

∫
d3k

(2π)3

∫
d3q

(2π)3

×
√

mK−mp

EK−(!k )Ep(!k )

√
mK−mp

EK−(!q )Ep(!q )
Φ†

1s(!k )

× lim
T,V→∞

〈K−(!k )p(−!k, σp)|T|K−(!q )p(−!q, σp)〉
V T

Φ1s(!q ),

(3.3)

where the matrix element of the T -matrix defines the am-
plitude of K−p scattering1

lim
T,V→∞

〈K−(!k )p(−!k, σp)|T|K−(!q )p(−!q, σp)〉
V T

=

M(K−(!q )p(−!q, σp)→ K−(!k )p(−!k, σp)). (3.4)

Thus, the energy level displacement of the ground state
of kaonic hydrogen is defined by the amplitude of K−p
scattering [7,8]:

−ε1s + i Γ1s

2
=

1
4mK−mp

∫
d3k

(2π)3

∫
d3q

(2π)3

×
√

mK−mp

EK−(!k )Ep(!k )

√
mK−mp

EK−(!q )Ep(!q )
Φ†

1s(!k )

×M(K−(!q )p(−!q, σp)→ K−(!k )p(−!k, σp))Φ1s(!q ),
(3.5)

Due to the wave functions Φ†
1s(!k ) and Φ1s(!q ) the main

contributions to the integrals over !k and !q come from the
regions of 3-momenta k ∼ 1/aB and q ∼ 1/aB, where
1/aB = 2.361MeV. Since typical momenta in the inte-
grand are much less than the masses of coupled particles,
mK− � 1/aB and mp � 1/aB, the amplitude of K−p
scattering can be defined for low-energy momenta only2.

Following [7,8] the amplitude of low-energy K−p scat-
tering we define as

M(K−(!q )p(−!q, σp)→ K−(!k )p(−!k, σp)) =
8π (mK− +mp) f

K−p
0 (

√
kq), (3.6)

where the amplitude fK
−p

0 (
√
kq) is determined by

fK
−p

0 (
√
kq) =

1
2i
√
kq

(
ηK

−p
0 (

√
kq) e 2iδK−p

0 (
√
kq) − 1

)
.

(3.7)

1 In Chiral Perturbation Theory (ChPT) [22,23] the
T -matrix can be expressed in terms of an effective La-
grangian Leff(x) (see also [7,8]). If all loop contributions are
taken into account and renormalization is carried out, the
effective Lagrangian Leff(x) can be used only in the tree-
approximation [24] (see also [7,8]).

2 It is obvious that due to formula (3.5) a knowledge of the
amplitude of K−p scattering for all relative momenta from zero
to infinity should give a possibility to calculate the energy level
displacement of the ground state of kaonic hydrogen without
any low-energy approximation.
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The shift and width of the energy level of the ground state
of kaonic hydrogen are equal to

ε1s = −2π
µ

∫∫
d3k

(2π)3
d3q

(2π)3

√
mK−mp

EK−(!k )Ep(!k )

×
√

mK−mp

EK−(!q )Ep(!q )
Φ†

1s(!k )Φ1s(!q )

× ηK−p
0 (

√
kq)

sin 2δK
−p

0 (
√
kq)

2
√
kq

,

Γ1s =
2π
µ

∫∫
d3k

(2π)3
d3q

(2π)3

√
mK−mp

EK−(!k )Ep(!k )

×
√

mK−mp

EK−(!q )Ep(!q )
Φ†

1s(!k )Φ1s(!q )

× 1√
kq
(1− ηK

−p
0 (

√
kq) cos 2δK

−p
0 (

√
kq)) =

1
2µ

∫∫
d3k

(2π)3
d3q

(2π)3

√
mK−mp

EK−(!k )Ep(!k )

×
√

mK−mp

EK−(!q )Ep(!q )
Φ†

1s(!k )Φ1s(!q )

×
√
kq σK

−p
0 (

√
kq). (3.8)

Formula (3.8) reduces to the DGBT formula defining the
amplitude of K−p scattering at k = q = 0 [7,8]. We
would like to emphasize that the main contributions to
the momentum integrals in (3.8) come from the region
k ∼ q ∼ 1/aB = 2.361MeV but not from k = q = 0.
Hence, the calculation of the amplitude of K−p scattering
at k = q = 0 is not an explicit result but an approxima-
tion, which is well-defined only if the amplitude of K−p
scattering is a smooth function near threshold3.

Assuming that near threshold the amplitude of low-
energy K−p scattering is a smooth function of relative
momentum Q of the K−p pair and keeping only the lead-
ing terms in momentum expansion at Q = 0, we arrive at
the energy level displacement of the ground state of kaonic
hydrogen:

−ε1s + i Γ1s

2
=
2π
µ

[
aK

−p
0 − i

1
2
dηK

−p
0 (Q)
dQ

∣∣∣
Q=0

]

×
∣∣∣∣∣
∫

d3k

(2π)3

√
mK−mp

EK−(!k )Ep(!k )
Φ1s(!k )

∣∣∣∣∣
2

. (3.9)

3 Practically, the corrections to the energy level displace-
ment, coming from a momentum expansion of the amplitude
of K−p scattering, are of order of powers of α. This means
that the term of order O(Q) gives a correction of order O(α),
multiplied by the derivative of the amplitude of K−p scatter-
ing with respect to the relative momentum Q, calculated at
Q = 0. The convergence of this expansion is fully defined by
the derivatives of the amplitude of K−p scattering. Such cor-
rections, caused by Coulombic photons, should be taken into
account on the same footing as the corrections caused by QCD
isospin-breaking and electromagnetic interactions [25,26] (see
also [27]).

This is the quantum field theoretic, relativistic covariant
and model-independent generalization of the DGBT for-
mula (1.2) [7,8].

The amplitude of low-energy K−p scattering we rep-
resent in the form

fK
−p

0 (Q) =
1
2iQ

(
ηK

−p
0 (Q) e 2iδK−p

0 (Q) − 1
)
=

1
2iQ

(
e 2iδK−p

B (Q) − 1
)
+ e 2iδK−p

B (Q)fK
−p

0 (Q)R,

(3.10)

where δK
−p

0 (Q)B is the phase shift of an elastic back-
ground of low-energy K−p scattering and fK

−p
0 (Q)R is

the contribution of resonances.
We assume that fK

−p
0 (Q)R is defined by the con-

tributions of the Λ(1405)-resonance, an SU(3)flavour sin-
glet [28], and the Λ(1800) and Σ(1750) resonances, com-
ponents of the SU(3)flavour octet [29] 4. For simplicity we
denote Λ(1405) as Λ0

1 and Λ(1800) and Σ(1750) as Λ
0
2 and

Σ0
2

5, respectively.

4 Amplitude of low-energy K−p scattering.
Resonances

Treating the resonances Λ(1405), Λ(1800) and Σ(1750) as
elementary fields6 we can write down phenomenological
interactions:

LΛ1BP (x) = g1Λ̄
0
1(x) tr{B(x)P (x)}+ h.c. =

g1Λ̄1(x)Bb
a(x)P

a
b (x) + h.c.,

LB2BP (x) =
1√
2
g2 tr{{B̄2, B}P}

+
1√
2
f2 tr{[B̄2, B]P}+ h.c. =

1√
2
(g2 + f2) (B̄2)baB

a
cP

c
b

+
1√
2
(g2 − f2) (B̄2)baB

c
bP

a
c + h.c., (4.1)

where g1, g2 and f2 are phenomenological coupling
constants, Λ0

1(x), (B̄2)ba(x), B
b
a(x) and P a

b (x) (a(b) =
1, 2, . . . , 8) are interpolating fields of the Λ(1405)-
resonance, the octet of baryon resonances Λ(1800) and
Σ(1750), the octet of light baryons and the octet of

4 Recall that the resonance Λ(1405) has a status ∗ ∗ ∗ ∗,
whereas the resonances Λ(1800) and Σ(1750) have a status
∗ ∗ ∗ [28,29].

5 We keep only the neutral component of the Σ(1750)-
resonance.

6 This agrees, for instance, with the approach developed
within ChPT in [30].
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pseudoscalar mesons, respectively:

(B̄2)ba =




Σ̄0
2√
2
+
Λ̄0

2√
6

Σ̄−
2 −Ξ̄−

2

Σ̄+
2 − Σ̄

0
2√
2
+
Λ̄0

2√
6

Ξ̄0
2

p̄2 n̄2 − 2√
6
Λ̄0

2



,

Bb
a =




Σ0

√
2
+
Λ0

√
6

Σ+ p

Σ− −Σ
0

√
2
+
Λ0

√
6

n

−Ξ− Ξ0 − 2√
6
Λ0


 ,

P a
b =




π0

√
2
+

η√
6

π+ K+

π− − π0

√
2
+

η√
6

K0

−K− K̄0 − 2√
6
η


 . (4.2)

For simplicity we identify the component η(x) of the
pseudoscalar octet with the observed pseudoscalar meson
η(550) [9].

Keeping only terms relevant to low-energy K−p scat-
tering we reduce the effective Lagrangians (4.1) to the
form

LΛ0
1BP (x) = g1 Λ̄

0
1(x)( !Σ(x) · !π(x)− p(x)K−(x)

+n(x)K̄0(x) +
1
3
Λ0(x)η(x)) + h.c.

LΛ0
2BP (x) =

g2√
3
Λ̄0

2(x)( !Σ(x) · !π(x)− Λ0(x)η(x))

+
g2 + 3f2
2
√
3

Λ̄0
2(x) (p(x)K

−(x)

−n(x)K̄0(x)) + h.c.,
LΣ0

2BP (x) = f2 Σ̄
0
2(x) (Σ

−(x)π+(x)−Σ+(x)π−(x))

+
g2√
3
Σ̄0

2(x) (Λ
0(x)π0(x) +Σ0(x)η(x))

+
g2 − f2
2

Σ̄0
2(x) (−p(x)K−(x)

−n(x)K̄0(x)) + h.c. . (4.3)

According to (3.10) at threshold Q = 0 the amplitude
fK

−p
0 (0) of K−p scattering we define as

fK
−p

0 (0) = AK−p
B + fK

−p
0 (0)R, (4.4)

where AK−p
B is a real parameter7, describing a smooth

elastic background δK
−p

0 (Q)B = AK−p
B Q, and fK

−p
0 (0)R

is the contribution of the resonances, which we determine
as

fK
−p

0 (0)R =
1
2

(
fK

−p
0 (0)I=0 + f

K−p
0 (0)I=1

)
, (4.5)

7 We calculate the parameter AK−p
B in sect. 5.

where the amplitudes fK
−p

0 (0)I=0 and f
K−p
0 (0)I=1 of low-

energy K−p scattering with isospin I = 0 and isospin I =
1 are saturated by the Λ(1405), Λ(1800) and Σ(1750) res-
onances, respectively. The amplitude fK

−p
0 (0)R contains

real and imaginary parts Re fK−p
0 (0)R and ImfK

−p
0 (0)R,

which define elastic and inelastic channels.

4.1 Imaginary part of fK
−p

0 (0)R

The imaginary part ImfK
−p

0 (0)R of the amplitude
fK

−p
0 (0)R is determined by inelastic channels. The near-
threshold low-energy K−p interaction contains four in-
elastic channels defined by strong low-energy interactions:
i) K−p → Σ−π+, ii) K−p → Σ+π−, iii) K−p → Σ0π0

and iv) K−p → Λ0π0. The amplitudes of these channels
we define as [30]

f(K−p→ Σ−π+) =
1
4π

µ

mK−

√
mΣ−

mp

×
[
− g2

1

mΛ0
1
−mK− −mp

+
1
6

g2
2 (1 + 3α2)

mΛ0
2
−mK− −mp

−1
2

g2
2 α2 (1− α2)

mΣ0
2
−mK− −mp

]
,

f(K−p→ Σ+π−) =
1
4π

µ

mK−

√
mΣ+

mp

×
[
− g2

1

mΛ0
1
−mK− −mp

+
1
6

g2
2(1 + 3α2)

mΛ0
2
−mK− −mp

+
1
2

g2
2 α2 (1− α2)

mΣ0
2
−mK− −mp

]
,

f(K−p→ Σ0π0) =
1
4π

µ

mK−

√
mΣ0

mp

×
[
− g2

1

mΛ0
1
−mK− −mp

+
1
6

g2
2 (1 + 3α2)

mΛ0
2
−mK− −mp

]
,

f(K−p→ Λ0π0) =
1
4π

µ

mK−

√
mΛ0

mp

×
[
− 1
2
1√
3

g2
2 (1− α2)

mΣ0
2
−mK− −mp

]
, (4.6)

where α2 = f2/g2.
In order to check the consistency of our approach we

suggest to use experimental data on the cross-sections for
the inelastic reactions K−p → Σ−π+, K−p → Σ+π−,
K−p→ Σ0π0 and K−p→ Λ0π0 taken at threshold of the
K−p pair [31,32]

see equation (4.7) on the next page

These data should place constraints on the input param-
eters of any approach [33]. In terms of the amplitudes of
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γ =
σ(K−p → Σ−π+)

σ(K−p → Σ+π−)
= 2.360 ± 0.040,

Rc =
σ(K−p → Σ−π+) + σ(K−p → Σ+π−)

σ(K−p → Σ−π+) + σ(K−p → Σ+π−) + σ(K−p → Σ0π0) + σ(K−p → Λ0π0)
= 0.664 ± 0.011,

Rn =
σ(K−p → Λ0π0)

σ(K−p → Σ0π0) + σ(K−p → Λ0π0)
= 0.189 ± 0.015. (4.7)

the inelastic reactions under consideration they read

γ =
|f(K−p→ Σ−π+)|2kΣ−π+

|f(K−p→ Σ+π−)|2kΣ+π−
,

Rc =
(
|f(K−p→ Σ−π+)|2kΣ−π+

+|f(K−p→ Σ+π−)|2kΣ+π−

)
×

(
|f(K−p→ Σ−π+)|2kΣ−π+

+|f(K−p→ Σ+π−)|2kΣ+π−

+|f(K−p→ Σ0π0)|2kΣ0π0

+|f(K−p→ Λ0π0)|2kΛ0π0

)−1

,

Rn =
|f(K−p→ Λ0π0)|2kΛ0π0

|f(K−p→Σ0π0)|2kΣ0π0+|f(K−p→Λ0π0)|2kΛ0π0
,

(4.8)

where kAB with A = Σ±, Σ0, Λ0 and B = π±, π0 is a
relative momentum of theAB pair, calculated at threshold

kAB(s) =
1
2
√
s

√
(s− (mA +mB)2)(s− (mA −mB)2).

(4.9)
At threshold s = (mK−+mp)2 and kAB((mK−+mp)2) =
kAB .

Expressing the amplitudes of inelastic channels with
neutral particles in the final states in terms of the ampli-
tudes of the reactions with charged particles in the final
state we get

f(K−p→ Σ0π0) =
1
2

[√
mΣ0

mΣ−
f(K−p→ Σ−π+)

+
√
mΣ0

mΣ+
f(K−p→ Σ+π−)

]
,

f(K−p→ Λ0π0) =
1
α2

1
2
√
3

[√
mΛ0

mΣ−
f(K−p→ Σ−π+)

−
√
mΛ0

mΣ+
f(K−p→ Σ+π−)

]
.

(4.10)

Combining relations (4.10) and (4.8) we express the ampli-
tudes of inelastic channels K−p → Σ+π−, K−p → Σ0π0

and K−p → Λ0π0 in terms of the amplitude of the reac-

tion K−p→ Σ−π+. This gives

f(K−p→ Σ+π−) = f(K−p→ Σ−π+)

√
1
γ

kΣ−π+

kΣ+π−
,

f(K−p→ Σ0π0) = f(K−p→ Σ−π+)
1
2

√
mΣ0

mΣ−

×
(
1 +

√
1
γ

mΣ−

mΣ+

kΣ−π+

kΣ+π−

)
,

f(K−p→ Λ0π0) = f(K−p→ Σ−π+)

√
Rn

1−Rn

kΣ0π0

kΛ0π0

× 1
2

√
mΛ0

mΣ−

(
1 +

√
1
γ

mΣ−

mΣ+

kΣ−π+

kΣ+π−

)
. (4.11)

The parameter α2 is defined by

α2 = −
√
1−Rn

3Rn

kΛ0π0

kΣ0π0

1−
√
1
γ

mΣ−

mΣ+

kΣ−π+

kΣ+π−

1 +

√
1
γ

mΣ−

mΣ+

kΣ−π+

kΣ+π−

. (4.12)

In our approach the parameter Rc turns out to be depen-
dent and reads

see equation (4.13) on the next page

Using the experimental values of γ, Rn and masses of
baryons and mesons [9] we get

Rc = 0.626± 0.007,
α2 = −0.314± 0.026, (4.14)

where uncertainties are caused by the experimental errors
of the parameters γ and Rn.

Comparing the theoretical prediction Rc = 0.626 ±
0.007 with the experimental value Rc = 0.664 ± 0.011
in (4.7) we can argue that our approach to the descrip-
tion of K−p scattering near threshold is consistent with
experimental data on the cross-sections for the inelastic
reactions within an accuracy better than 6%.

Hence, using the relations γ and Rc for the cross-
sections for the inelastic reactions we can write down

σ(K−p→ all) =
∑
X

σ(K−p→ X) =

1
Rc

(
1 +

1
γ

)
σ(K−p→ Σ−π+), (4.15)
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Rc =
1

1 +
1

4

γ

γ + 1

kΣ0π0

kΣ−π+

(
mΣ0

mΣ−
+

Rn

1 − Rn

mΛ0

mΣ−

)(
1 +

√
1

γ

mΣ−

mΣ+

kΣ−π+

kΣ+π−

)2 . (4.13)

where X = Σ−π+, Σ+π−, Σ0π0 and Λ0π0.
Due to the optical theorem relation (4.15) determines

the imaginary part of the amplitude fK
−p

0 (0)R. It reads

ImfK
−p

0 (0)R =
1
Rc

(
1 +

1
γ

)
|f(K−p→ Σ−π+)|2kΣ−π+ .

(4.16)

Since in our approach ImfK
−p

0 (0) = ImfK
−p

0 (0)R, rela-
tion (4.16) allows to determine the total width of kaonic
hydrogen Γ1s in terms of the partial width of the decay
AKp → Σ− + π+ [33]

Γ1s =
1
Rc

(
1 +

1
γ

)
Γ (AKp → Σ−π+) =

842.248 ImfK
−p

0 (0) =

842.248
1
Rc

(
1 +

1
γ

)
|f(K−p→ Σ−π+)|2kΣ−π+ eV.

(4.17)

For the calculation of the numerical value of f(K−p →
Σ−π+) we have to determine the coupling constant g1
and g2. They can be obtained fitting the total experi-
mental widths of the resonances Λ(1405), Λ(1800) and
Σ(1750) [9]. We would like to remark that within an ac-
curacy better than 6% we can set α2 = −1/3 and neglect
the contribution of the Λ(1800)-resonance. Therefore, the
constant g2 we define from the experimental data on the
Σ(1750)-resonance only.

We would like to emphasize that the experimental
data on the masses and total widths of the Λ(1405) and
Σ(1750) resonances are rather ambiguous. Below we use
only recommended values for the masses and total widths
of these resonances [9].

4.1.1 The Λ(1405)-resonance

The recommended values for the mass and total width of
the Λ(1405)-resonance are equal to mΛ0

1
= 1406MeV and

ΓΛ0
1
= 50MeV [28,34].

The total width of the Λ(1405)-resonance is defined
by the decays Λ(1405) → Σ + π [9]. Due to the effective
Lagrangian (4.3) the total width of the Λ(1405)-resonance

ΓΛ0
1
reads

ΓΛ0
1
=
g2
1

8π
(mΛ0

1
+mΣ+)2 −m2

π−

m2
Λ0

1

kΣ+π−

+
g2
1

8π
(mΛ0

1
+mΣ−)2 −m2

π+

m2
Λ0

1

kΣ−π+

+
g2
1

8π
(mΛ0

1
+mΣ0)2 −m2

π0

m2
Λ0

1

kΣ0π0 . (4.18)

Setting ΓΛ0
1
= 50MeV and using the experimental val-

ues for the masses of the Σ-hyperon and π-meson [9], we
obtain the value of the coupling constant g1: g1 = 0.907.

4.1.2 The Σ(1750)-resonance

The recommended values for the mass and total width
of the Σ(1750)-resonance are equal to mΣ0

2
= 1750MeV

and ΓΣ0
2
= 90MeV [29,35]. From the Lagrangian (4.3) we

define the total width of the Σ(1750)-resonance:

ΓΣ0
2
=

g2
2

72π
(mΣ0

2
+mΣ+)2 −m2

π−

m2
Σ0

2

kΣ+π−

+
g2
2

72π
(mΣ0

2
+mΣ−)2 −m2

π+

m2
Σ0

2

kΣ−π+

+
g2
2

24π
(mΣ0

2
+mΛ0)2 −m2

π0

m2
Σ0

2

kΛ0π0

+
g2
2

24π
(mΣ0

2
+mΣ0)2 −m2

η

m2
Σ0

2

kΣ0η

+
g2
2

18π
(mΣ0

2
+mp)2 −m2

K−

m2
Σ0

2

kpK−

+
g2
2

18π
(mΣ0

2
+mn)2 −m2

K̄0

m2
Σ0

2

knK̄0 , (4.19)

where we have used α2 = −1/3. Setting ΓΣ0
2
= 90MeV

and using experimental values for the masses of baryons
and mesons we get g2 = 1.123.

4.1.3 Numerical values of f(K−p→ Σ−π+) and imaginary

part of fK
−p

0 (0)R

Setting α2 = −1/3 in (4.6) and using the coupling con-
stant g1 = 0.907 and g2 = 1.123, calculated above, we
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obtain the numerical value of the amplitude f(K−p →
Σ−π+)

f(K−p→ Σ−π+) =
1
4π

µ

mK−

√
mΣ−

mp

×
[
− g2

1

mΛ0
1
−mK− −mp

+
2
9

g2
2

mΣ0
2
−mK− −mp

]
=

(0.379± 0.023) fm . (4.20)

Due to relation (4.16) this gives the imaginary part of the
amplitude fK

−p
0 (0)R:

ImfK
−p

0 (0)R = (0.269± 0.032) fm. (4.21)

According to this value and the relation ImfK
−p

0 (0) =
ImfK

−p
0 (0)R, the total width Γ1s of kaonic hydrogen in

the ground state should be equal to

Γ th
1s = 842.248 ImfK

−p
0 (0) = (227± 27) eV. (4.22)

This agrees well with recent experimental data by the
DEAR Collaboration Γ exp

1s = (213± 138) eV [13].

4.2 Real part of fK
−p

0 (0)R

A knowledge of the numerical values of the coupling con-
stants g1, g2 and α2 allows to calculate the real part of
the amplitude fK

−p
0 (0)R. In our approach it reads

Re fK−p
0 (0)R =

1
2

(
Re fK−p

0 (0)I=0
R +Re fK−p

0 (0)I=1
R

)
=

1
8π

µ

mK−

[
g2
1

mΛ0
1
−mK−−mp

+
4
9

g2
2

mΣ0
2
−mK−−mp

]
=

(−0.154± 0.009) fm, (4.23)

where we have set α2 = −1/3.
Now we proceed to the analysis of the contribution of

a smooth elastic background of low-energy elastic K−p
scattering.

5 Amplitude of low-energy K−p scattering.
Elastic background

At the hadronic level a smooth elastic background AK−p
B

we define as

AK−p
B = AK−p

s +AK−p
t +AK−p

u , (5.1)

where AK−p
s , AK−p

t and AK−p
u are the contributions of the

s, t and u channels of low-energy elastic K−p scattering,
respectively.

For the calculation of the r.h.s. of (5.1) we assume the
following contributions:

AK−p
B = AK−p

CA +AK−p

K̄K
, (5.2)

where i) AK−p
CA is defined by the current algebra [36–38],

accounting for all low-energy interactions which can be
described by Effective Chiral Lagrangians [39]. In the gen-
eral form this contribution has been calculated in [37,38];
ii) AK−p

K̄K
is the contribution of the four-quark interme-

diate states qqq̄q̄ (or K̄K molecule) such as the scalar
mesons a0(980), f0(980) and so on [40–44] (see also [45])
going beyond the scope of Effective Chiral Lagrangians.
As has been recently found by the KLOE Collaboration
(DAPHNE), measuring the radiative decays of the vec-
tor φ(1020)-meson, φ(1020) → a0(980)γ and φ(1020) →
f0(980), that the quark structure of the scalar mesons
a0(980) and f0(980) differs substantially from qq̄ [46].

5.1 Calculation of AK
−p
CA

The current algebra contribution to the parameter AK−p
B

we denote as
AK−p

CA =
1
2
(A0

0 +A
1
0), (5.3)

where A0
0 and A

1
0 describe the contribution of K

−p scat-
tering in the states with isospin I = 0 and I = 1. Using
the results obtained in [37,38] we get

A0
0 =

3
8π

µ

F 2
K

,

A1
0 =

1
8π

µ

F 2
K

, (5.4)

where FK = 112.996MeV is the PCAC constant of the
K±-meson [9]. This gives

AK−p
CA =

1
4π

µ

F 2
K

= 0.398 fm. (5.5)

The value (5.5) is caused by the contributions of the
s, t and u channels of low-energy elastic K−p scat-
tering, which can be described by Effective Chiral La-
grangians [39]. The result (5.5) is obtained at leading order
in Chiral perturbation theory [22,23] (see also [47]). Ac-
cording to Chiral perturbation theory [22,23] the accuracy
of the value, given by (5.5), is of orderO(m2

K−/16π2F 2
K) =

O(12%). This coincides with an accuracy of the current al-
gebra approach [48,49].

5.2 Calculation of the four-quark contribution AK
−p
K̄K

Four-quark states (or K̄K molecule) such as the scalar
mesons a0(980) and f0(980) can give a contribution only
to the t-channel of low-energy elastic K−p scattering de-
fined by the reaction K− +K+ → p + p̄. Since the four-
quark states a0(980) and f0(980) cannot be described by
Effective Chiral Lagrangians [39], the contribution of these
states does not enter AK−p

CA .
According to Jaffe [40], the scalar mesons a0(980) and

f0(980) belong to an SU(3)flavour nonet and the scalar
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meson f0(980) decouples from the ππ state. Following
Jaffe [40], the SU(3)flavour invariant interaction of the
nonet of four-quark scalar mesons with two nonents of
pseudoscalar light mesons, having a qq̄ quark structure,
can be written as

LSPP (x) =
√
2 g0 tr{PPM} =

√
2 g0 P b

aP
a
cM

c
b . (5.6)

where P andM are nonets of pseudoscalar light qq̄ mesons
and scalar qqq̄q̄ mesons, respectively,

P b
a =



π0

√
2
+
η0√
2

π+ K+

π− − π0

√
2
+
η0√
2
K0

−K− K̄0 ηs


 ,

M b
a =




a0
0√
2
− ε

2
a+
0 κ+

a−0 − a0
0√
2
− ε

2
κ0

−κ− κ̄0 − f0√
2
+
ε

2



, (5.7)

where η0 and ηs are pseudoscalar states with quark struc-
ture η0 = (uū + dd̄)/

√
2 and ηs = ss̄ [40]. Then,

!a0 = (a+
0 , a

0
0, a

−
0 ) = (ss̄ud̄, ss̄(uū − dd̄)/

√
2, dūss̄) is the

isotriplet of a0(980)-mesons, κ = (κ+, κ0) = (us̄dd̄, ds̄uū)
and κ̄ = (κ̄0,−κ−) = (sd̄uū,−sūdd̄) are doublets of
strange scalar four-quark states, f0 = ss̄(uū − dd̄)/

√
2

is the f0(980)-meson and ε is the isoscalar scalar ε(700)-
meson with ε = ud̄dū quark structure and mass mε =
700MeV [40]. The nonet M is constructed in such a way
that the f0(980)-meson decouples from the ππ states,
whereas the ε(700)-meson couples to the ππ states but de-
couples from the K̄K states. This implies that the ε(700)-
meson does not contribute to the amplitude of K−p scat-
tering.

The interactions of the scalar mesons a0(980) and
f0(980) with the K−-meson can be written as

LSKK(x) = g0 [−a0
0(x) + f0(x)]K

+(x)K−(x), (5.8)

where a0
0(x), f0(x) and K

±(x) are interpolating fields of
the a0

0(980)-, f0(980)- and K
±-mesons.

For a numerical calculation we use the value g0 =
ga0K+K− = gf0K+K− = 2.746GeV, obtained within the
K̄K molecule model of the scalar mesons a0(980) and
f0(980) [43] (see also [41] and [42]). In this model the
scalar mesons a0(980) and f0(980) couple only to the K̄K
states8 and decouple from the ππ states.

The interaction of the nonet of four-quark scalar
mesons M with octets of light baryons we define as

LSBB(x) =
√
2gD tr{{B̄, B}M}+

√
2gF tr{[B̄, B]M}=√

2(gD + gF )B̄b
aB

a
cM

c
b +

√
2(gD − gF )B̄b

aB
c
bM

a
c ,

(5.9)

8 The scalar meson a0(980) couples also to the πη states,
where η is the well-known η(550) pseudoscalar meson [9].

where B and B̄ are octets of light baryons (see (4.2))

B̄b
a =




Σ̄0

√
2
+
Λ̄0

√
6

Σ̄− −Ξ̄−

Σ̄+ − Σ̄
0

√
2
+
Λ̄0

√
6

Ξ̄0

p̄ n̄ − 2√
6
Λ̄0




(5.10)

and gD and gF are the coupling constants of the symmetric
and antisymmetric SBB interactions [50].

The effective Lagrangian of the SNN interaction reads

LSBB(x) = (gD + gF )
[√
2 p̄(x)n(x)a+

0 (x)

+
√
2 n̄(x)p(x)a−0 (x) + (p̄(x)p(x)− n̄(x)n(x))a0

0(x)
−(1− 2αS) (p̄(x)p(x) + n̄(x)n(x))f0(x)
−
√
2αS (p̄(x)p(x) + n̄(x)n(x))ε(x)

]
+ . . . , (5.11)

where ε(x), p(x) and n(x) are the interpolating fields of
the ε(700)-meson, the proton and the neutron. The pa-
rameter αS is given by αS = gF /(gD + gF ) [50].

In order to suppress the contribution of the four-quark
state ε(700) to the S-wave scattering lengths of πN scat-
tering we have to set αS = 0 or gF = 0. As a result,
the four-quark state ε(700) decouples from nucleons. This
gives

LSBB(x) = gD

[√
2 p̄(x)n(x)a+

0 (x) +
√
2 n̄(x)p(x)a−0 (x)

+(p̄(x)p(x)− n̄(x)n(x))a0
0(x)

−(p̄(x)p(x) + n̄(x)n(x))f0(x)
]
+ . . . . (5.12)

At the threshold of the reaction K− + p → K− + p the
contribution of the four-quark states a0(980) and f0(980)
we define as

AK−p
K̄K

=
M(K−p→ K−p)a0+f0

8π(mK− +mp)
= −gD

2π
g0
m2

a0

µ

mK−
,

(5.13)
where we have set ma0 = mf0 = 980MeV [9].

The coupling constant gD is not known [51]. For a
further calculation of AK−p

K̄K
we can set [52]

gD =
gπNN

gA
ξ, (5.14)

where gπNN = 13.21 [53] and gA = 1.267 are the πNN
coupling constant and the renormalization constant of the
axial-vector coupling due to strong interactions, respec-
tively, and ξ is a parameter, which we estimate below.

Using (5.14) the contribution of the a0(980) and
f0(980) scalar mesons can be written as

AK−p

K̄K
=
M(K−p→ K−p)a0+f0

8π(mK− +mp)
=

− ξ 1
2π
gπNN

gA

g0
m2

a0

µ

mK−
= −0.614 ξ fm.

(5.15)
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Fig. 1. The quark diagram describing a smooth elastic back-
ground of low-energy elastic K−p scattering in the Effective
quark model with chiral U(3) × U(3) symmetry.

The parameter AK−p
B is equal to

AK−p
B = 0.398− 0.614 ξ fm. (5.16)

In order estimate the value of the parameter ξ we sug-
gest to calculate the parameter AK−p

B within the Effective
quark model with chiral U(3)× U(3) symmetry [17–19].

5.3 AK
−p
B in the Effective quark model with chiral

U(3) × U(3) symmetry

Following the principle of the quark-hadron duality [54]
we assume that the contribution of the smooth elastic
background of low-energy elastic K−p scattering can be
fully fitted by the lowest quark box-diagram depicted in
fig. 1, calculated with the Effective quark model with chi-
ral U(3)× U(3) symmetry [17–19].

Using the reduction technique [21] the amplitude of
elastic low-energy K−p scattering we define as

(2π)4i δ(4)(q ′ + p ′ − q − p)M(K−p→ K−p) =

lim
p ′ 2, p2→m2

p, q
′ 2, q2→m2

K−

∫
d4x1d4x2d4x3d4x4

× ei q ′·x1+ip ′·x2−ip·x3−iq·x4

× (✷1 +m2
K−)(✷4 +m2

K−) ū(p ′, σ ′ )
−−−−−−−−−→
(iγν ∂ν2 −mp)

×〈0|T(K−(x1)p(x2)p̄(x3)K+(x4))|0〉
×←−−−−−−−−−−−
(−iγµ ∂µ3 −mp)u(p, σ), (5.17)

where p(x) and u(p, σ) are the interpolating field operator
and the Dirac bispinor of the proton, respectively, and
K±(x) are the interpolating fields of the K∓-mesons.

In order to describe the r.h.s. of eq. (5.17) at the quark
level we follow [17] and use the equations of motion

−−−−−−−−−→
(iγν ∂ν2 −mp) p(x1) =

gB√
2
ηp(x2),

p̄(x3)
←−−−−−−−−−−−
(−iγµ∂µ3 −mp) =

gB√
2
η̄p(x3), (5.18)

where ηp(x2) and η̄p(x3) are the three-quark current den-
sities [17]

ηp(x2) = − εijk [ūci(x2)γµuj(x2)]γµγ5dk(x2),

η̄p(x3) = + εijk d̄i(x3)γµγ5[ūj(x3)γµuck(x3)] , (5.19)

where i, j and k are colour indices and ψ̄ c(x) = ψ(x)TC
and C = −CT = −C† = −C−1 is the charge conju-
gate matrix, T denotes transposition, and gB is the phe-
nomenological coupling constant of the low-lying baryon
octet B8(x) coupled to the three-quark current densi-
ties [17]

L(B)
int (x) =

gB√
2
B̄8(x)η8(x) + h.c. (5.20)

The coupling constant gB is equal to gB = 1.34 ×
10−4MeV−2 [17].

For the interpolating field operators of the K±-mesons
we use the following equations of motion [17]:

(✷1 +m2
K−)K−(x1) =

gK√
2
ū(x1)iγ5s(x1),

(✷4 +m2
K−)K+(x4) =

gK√
2
s̄(x4)iγ5u(x4), (5.21)

where gK = (m + ms)/
√
2FK , m = 330MeV and ms =

465MeV are the masses of the constituent u, d and s
quarks, respectively [17,19] (see also [55]).

The amplitude of low-energy elastic K−p scattering is
defined by

M(K−p→ K−p) =

− i 1
4
g2
B g

2
K

∫
d4x1d4x2d4x3 e

i q ′·x1+ip ′·x2−ip·x3 ū(p ′, σ ′)

×〈0|T(ū(x1)iγ5s(x1)ηp(x2)η̄p(x3)s̄(0)iγ5u(0))|0〉u(p, σ),
(5.22)

where the external momenta q ′, p ′, q and p should be kept
on mass shell q ′ 2 = q2 = m2

K− and p ′ 2 = p2 = m2
p.

In the appendix we have carried out the calculation of
the amplitude (5.22) at threshold. The parameter AK−p

B
is equal to (see (A.9))

AK−p
B =

M(K−p→ K−p)
8π(mK− +mp)

= −0.328± 0.033 fm. (5.23)

This allows to estimate the value of the parameter ξ (5.14).
Equating (5.16) to (5.23) we get ξ = 1.2± 0.1.
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5.4 S-wave scattering length aK
−p
0 and shift εth1s

Using the value of the parameter AK−p
B , describing the

contribution of the smooth elastic background of low-
energy elastic K−p scattering, we obtain the S-wave scat-
tering length aK

−p
0 :

aK
−p

0 = (−0.328± 0.033) + (−0.154± 0.009) =
(−0.482± 0.034) fm. (5.24)

This results in the shift of the energy level of the ground
state of kaonic hydrogen

εth1s = − 421.124 aK−p
0 = 203± 15 eV. (5.25)

The theoretical value fits well the preliminary experimen-
tal data εexp

1s = (183 ± 62) eV by the DEAR Collabora-
tion [13].

6 Electromagnetic decay channels

It is well known [53] that in the case of the energy level
displacement of the ground state of pionic hydrogen the
electromagnetic channel Aπp → n + γ defines 64% of the
experimental value of the width Γ1s = (0.868± 0.056) eV.
The width of the energy level of the ground state of pionic
hydrogen can be written as

Γ1s =
8π
9
p∗

µ

(
a
1/2
0 − a

3/2
0

)2

|Ψ1s(0)|2
(
1 +

1
P

)
, (6.1)

where µ = mπ−mp/(mπ− +mp) = 121.497MeV is the re-
duced mass of the π−p system for mπ− = 139.570MeV
and mp = 938.272MeV, p∗ is the relative momentum
equal to

p∗ =
mp +mπ−

2

×
√[

1−
(mn +mπ0

mp +mπ−

)2][
1−

(mn −mπ0

mp +mπ−

)2]
=

28.040MeV, (6.2)

Ψ1s(0) = 1/
√
πa3

B is the wave function of the ground state
of pionic hydrogen at the origin, and a1/2

0 and a3/2
0 are the

S-wave scattering lengths of πN scattering with isospin
I = 1/2 and I = 3/2. The experimental values a1/2

0 =
0.1788 ± 0.0043m−1

π− and a3/2
0 = −0.0927 ± 0.0085m−1

π− ,
obtained by the PSI Collaboration [53], give a1/2

0 −a3/2
0 =

0.2715 ± 0.0095m−1
π− . Then, P is the Panofsky ratio de-

fined by [16]

1
P
=

Γ (Aπp → nγ)
Γ (Aπp → nπ0)

= 0.647± 0.004, (6.3)

where we have adduced the experimental value of 1/P
obtained in [16].

In the case of kaonic hydrogen there are two electro-
magnetic decay channels AKp → Λ0 + γ and AKp →
Σ0+γ, which are related to the reactionsK−+p→ Λ0+γ
and K− + p → Σ0 + γ. Therefore, the total width of the
energy level of the ground state of kaonic hydrogen can be
written as [15]

Γ1s =
4π
µ

ImfK−p(0) |Ψ1s(0)|2 (1 +X), (6.4)

where X, the inverse Panofsky ratio for kaonic hydrogen,
is defined by [15]

X =
Γ (AKp → Λ0γ) + Γ (AKp → Σ0γ)

Γ1s
. (6.5)

Below we give a theoretical analysis and numerical esti-
mate of the value of X.

First, we consider the decay of pionic hydrogen Aπp →
n + γ, then we extend the developed technique and me-
thodics to the decays of kaonic hydrogen AKp → Λ0 + γ
and AKp → Σ0 + γ.

6.1 Radiative decay of pionic hydrogen

The amplitude of the decay Aπp → n+ γ we define as [7,
8,48,49]

M(Aπp → nγ) =
√
1
2µ

∫
d3k

(2π)3

√
mπ−mp

Eπ−(!k )Ep(!k )

×Φ1s(!k )M(π−(!k )p(−!k )→ nγ), (6.6)

where µ = mπ−mp/(mπ− + mp) = 121.497MeV is the
reduced mass of the π−p system and Φ1s(!k ) is the wave
function of the ground state of pionic hydrogen in the
momentum representation.

The amplitude M(π−(!k )p(−!k )→ nγ) of the reaction
π− + p→ n+ γ is determined by [48,49]

M(π−(!k )p(−!k )→ nγ) =√
4π e 〈n(−!q, σ)|Je*m

µ (0)|π−(!k )p(−!k, σp)〉 eµ(!q, λ),
(6.7)

where Je*m
µ (0) is the electromagnetic hadronic current [48,

49]

Je*m
µ (0) = J3

µ(0) +
1√
3
J8
µ(0). (6.8)

Here, J3
µ(0) is the third component of the isotopic vector

and J8
µ(0), the isospin singlet, is the eighth component of

the SU(3)flavour octet; eµ(!q, λ) is the polarization vector
of the emitted photon.

Using the reduction technique [21] for the π−-meson
we reduce the matrix element of the electromagnetic
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hadronic current (6.6) to the form

〈n(−!q, σ)|Je*m
µ (0)|π−(!k )p(−!k, σp)〉 =

lim
k2

π−→m2
π−
i

∫
d4x e−ikπ− ·x (✷x +m2

π−)

×〈n(−!q, σ)|T(Je*m
µ (0)π−†(x))|p(−!k, σp)〉, (6.9)

where kπ− =
(√

!k 2 +m2
π− ,!k

)
. According to the PCAC

hypothesis [48,49] the interpolating fields of the π-mesons
are related to the divergences of the axial-vector currents.
For the π−-meson field we get

π−†(x) =
1√
2

1
m2

πFπ
∂νJ1−i2

5ν (x), (6.10)

where Fπ = 92.419MeV is the PCAC constant and
J1−i2

5ν (x) = J1
5ν(x) − iJ2

5ν(x) is the hadronic axial-vector
current [48,49].

In the soft-pion limit [48,49] the r.h.s. of (6.9) can be
rewritten as9

〈n(−!q, σ)|Je*m
µ (0)|π−(!k )p(−!k, σp)〉 =

i√
2Fπ

∫
d4x 〈n(−!q, σ)|T(Je*m

µ (0)∂νJ1−i2
5ν (x))|p(!0, σp)〉.

(6.11)

Integrating by parts we arrive at the expression [48,49]

〈n(−!q, σ)|Je*m
µ (0)|π−(!k )p(−!k, σp)〉 =

i√
2Fπ

〈n(−!q, σ)|[Je*m
µ (0), Q1−i2

5 (0)]|p(!0, σp)〉, (6.12)

where Q1−i2
5ν (0) is the axial-vector charge operator

Q1−i2
5 (0) =

∫
d3xJ1−i2

50 (0, !x ). (6.13)

Using Gell-Mann’s current algebra [48,49] we get

〈n(−!q, σ)|Je*m
µ (0)|π−(!k )p(−!k, σp)〉 =

− i√
2Fπ

〈n(−!q, σ)|J1−i2
5µ (0)|p(!0, σp)〉. (6.14)

The matrix element in the r.h.s. of (6.14) is related to the
matrix element of the axial-vector current defining the
β-decay of the neutron [56,57]

〈n(−!q, σ)|J1−i2
5µ (0)|p(!0, σp)〉 = gA ūn(−!q, σ)γµγ5u(!0, σp),

(6.15)
where ūn(−!q, σ) and u(!0, σp) are Dirac bispinors of the
neutron and the proton, respectively.

9 The soft-pion limit as well as the soft-kaon limit should
be understood as ChPT at leading order in chiral expan-
sions [22,23].

Thus, the matrix element of the reaction π−+p→ n+γ
is determined by

M(π−(!k )p(−!k )→ nγ) =

−
√
2π

iegA
Fπ

ū(−!q, σ)γµγ5u(!0, σp) eµ(!q, λ). (6.16)

The partial width of the decay Aπp → n+ γ is equal to

Γ (Aπp → nγ) = α
3
4
g2
A

F 2
π

mn

mπ−

×
(
1− m2

n

(mπ− +mp)2

)
|Ψ1s(0)|2 = 0.369 eV. (6.17)

This value should be compared with the partial width of
the decay Aπp → nπ0, which reads

Γ (Aπp → nπ0) =
8π
9
p∗

µ

×
(
a
1/2
0 − a

3/2
0

)2

|Ψ1s(0)|2 = 0.542 eV. (6.18)

The Panofsky ratio 1/P is equal to

1
P
=
27
32
α

π

g2
A

F 2
π

mn

mπ−

µ

p∗
1(

a
1/2
0 − a

3/2
0

)2

×
(
1− m2

n

(mπ− +mp)2

)
= 0.681± 0.048. (6.19)

The theoretical value agrees with the experimental data
1/P = 0.647 ± 0.004 [16]. The theoretical error is related
to the errors of the experimental values of the S-wave
scattering lengths a1/2

0 −a3/2
0 = (0.2715±0.0095)m−1

π− [53].

The cross-section for the reaction π− + p → n + γ at
low relative velocities of the π−p system v is equal to

σ(π−p→ nγ) =
432
v

µbarn. (6.20)

The result (6.20) agrees well with the theoretical estimate
given by Anderson and Fermi [58].

Now we are able to apply the technique developed
above to the calculation of the partial widths of the elec-
tromagnetic decay channels of kaonic hydrogen AKp →
Λ0 + γ and AKp → Σ0 + γ.
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6.2 Radiative decays of kaonic hydrogen

Amplitudes of the decays AKp → Λ0 + γ and AKp →
Σ0 + γ we define in analogy to (6.6). This gives

M(AKp → Λ0γ) =
√
1
2µ

∫
d3k

(2π)3

×
√

mK−mp

EK−(!k )Ep(!k )
Φ1s(!k )M(K−(!k )p(−!k )→ Λ0γ),

M(AKp → Σ0γ) =
√
1
2µ

∫
d3k

(2π)3

×
√

mK−mp

EK−(!k )Ep(!k )
Φ1s(!k )M(K−(!k )p(−!k )→ Σ0γ),

(6.21)

where µ = mK−mp/(mK− + mp) = 323.478MeV is the
reduced mass of the K−p system and Φ1s(!k ) is the wave
function of the ground state of kaonic hydrogen in the
momentum representation.

The amplitudes of the reactions K−+ p→ Λ0+γ and
K− + p→ Σ0 + γ read

M(K−(!k )p(−!k )→ Λ0γ) =√
4π e 〈Λ0(−!q, σ)|Je*m

µ (0)|K−(!k )p(−!k, σp)〉 eµ(!q, λ),
M(K−(!k )p(−!k )→ Σ0γ) =√
4π e 〈Σ0(−!q, σ)|Je*m

µ (0)|K−(!k )p(−!k, σp)〉 eµ(!q, λ).
(6.22)

The application of the reduction technique reduces the
matrix elements (6.22) to the form

〈Λ0(−!q, σ)|Je*m
µ (0)|K−(!k )p(−!k, σp)〉 =

lim
k2

K−→m2
K−

i

∫
d4x e−ikK− ·x (✷x +m2

K−)

×〈Λ0(−!q, σ)|T(Je*m
µ (0)K−†(x))|p(−!k, σp)〉,

〈Σ0(−!q, σ)|Je*m
µ (0)|K−(!k )p(−!k, σp)〉 =

lim
k2

K−→m2
K−

i

∫
d4x e−ikK− ·x (✷x +m2

K−)

×〈Σ0(−!q, σ)|T(Je*m
µ (0)K−†(x))|p(−!k, σp)〉.

(6.23)

The PCAC hypothesis allows to define the interpolating
field K−†(x) in terms of the divergence of the axial-vector
current [48,49]

K−†(x) =
1√
2

1
m2

K−FK
∂νJ4−i5

5ν (x). (6.24)

In the soft-kaon limit kK− → 0 we obtain

〈Λ0(−!q, σ)|Je*m
µ (0)|K−(!k )p(−!k, σp)〉 =

i√
2FK

〈Λ0(−!q, σ)|[Je*m
µ (0), Q4−i5

5 (0)]|p(!0, σp)〉,

〈Σ0(−!q, σ)|Je*m
µ (0)|K−(!k )p(−!k, σp)〉 =

i√
2FK

〈Σ0(−!q, σ)|[Je*m
µ (0), Q4−i5

5 (0)]|p(!0, σp)〉.
(6.25)

Using Gell-Mann’s current algebra [48,49] we transcribe
the r.h.s. of the matrix elements (6.25) into the form

〈Λ0(−!q, σ)|Je*m
µ (0)|K−(!k )p(−!k, σp)〉 =

− i√
2FK

〈Λ0(−!q, σ)|J4−i5
5µ (0)|p(!0, σp)〉,

〈Σ0(−!q, σ)|Je*m
µ (0)|K−(!k )p(−!k, σp)〉 =

− i√
2FK

〈Σ0(−!q, σ)|J4−i5
5µ (0)|p(!0, σp)〉, (6.26)

where FK = 112.996MeV is the PCAC constant of K±-
mesons [9]. The matrix elements of the axial-vector cur-
rent in the r.h.s. of (6.26) can be defined in analogy with
(6.15)

〈Λ0(−!q, σ)|J4−i5
5µ (0)|p(!0, σp)〉 =

gΛ
0

A ūΛ0(−!q, σ)γµγ5u(!0, σp),

〈Σ0(−!q, σ)|J4−i5
5µ (0)|p(!0, σp)〉 =

gΣ
0

A ūΣ0(−!q, σ)γµγ5u(!0, σp). (6.27)

The partial widths of the decays AKp → Λ0γ and AKp →
Σ0γ are equal to

Γ (AKp → Λ0γ) = α
3
4
(gΛ

0

A )2

F 2
K

mΛ0

mK−

×
(
1− m2

Λ0

(mK− +mp)2

)
|Ψ1s(0)|2,

Γ (AKp → Σ0γ) = α
3
4
(gΣ

0

A )2

F 2
K

mΣ0

mK−

×
(
1− m2

Σ0

(mK− +mp)2

)
|Ψ1s(0)|2. (6.28)

The coupling constant gΛ
0

A can be taken from the data on
the β-decay of the Λ0-hyperon, Λ0 → p+ e− + ν̄e: gΛ

0

A =
0.718 ± 0.015 [9]. Due to isospin invariance of strong in-
teractions we can set gΣ

0

A = gΣ
−

A /
√
2 = 0.240±0.012 [59],

where gΣ
−

A = 0.340 ± 0.017 defines the β-decay Σ− →
n + e− + ν̄e [9]. As a result, we obtain the following nu-
merical values of the partial widths:

Γ (AKp → Λ0γ) = (0.82± 0.04) eV,
Γ (AKp → Σ0γ) = (0.08± 0.01) eV, (6.29)
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where we have used mΛ0 = 1115.683MeV and mΣ0 =
1192.642MeV [9].

The parameterX, the inverse Panofsky ratio for kaonic
hydrogen, is equal to

X =
Γ (AKp → Λ0γ) + Γ (AKp → Σ0γ)

Γ1s
=

α
3
16π

1
F 2
K

µ

mK−

1

ImfK
−p

0 (0)

×
[
(gΛ

0

A )2mΛ0

(
1− m2

Λ0

(mK− +mp)2
)

+(gΣ
0

A )2mΣ0

(
1− m2

Σ0

(mK− +mp)2
)]

=

(3.97± 0.47)× 10−3. (6.30)

Thus, the contribution of radiative decay channels AKp →
Λ0γ and AKp → Σ0γ to the width of the ground state of
kaonic hydrogen is less than 0.5%.

The branching ratios B(AKp → Λ0γ) = (3.61±0.43)×
10−3 and B(AKp → Σ0γ) = (0.35 ± 0.04) × 10−3, ob-
tained for the partial widths (6.29) and the total width
Γ1s = (227 ± 27) eV given by (4.22), are in qualita-
tive agreement with both theoretical values, predicted
by Hamaie et al. [60], B(AKp → Λ0γ) = 4.72 × 10−3

and B(AKp → Σ0γ) = 2.43 × 10−3, and experimen-
tal values, B(AKp → Λ0γ) = (0.86 ± 0.12) × 10−3 and
B(AKp → Σ0γ) = (1.44± 0.23)× 10−3 [61].

The branching ratio of the radiative decays of the
Λ(1405)-resonance is equal to B(Λ(1405) → Λ0γ) +
B(Λ(1405) → Σ0γ) = (0.13 ± 0.03)% [9,62]. The data on
radiative decays of the Σ(1750)-resonance are absent [9].

Hence, within an accuracy about 1% one can neglect
the contributions of radiative decay channels to the width
of the ground state of kaonic hydrogen.

7 Conclusion

We have analysed the energy level displacement of the
ground state of kaonic hydrogen within a quantum field
theoretic and relativistic covariant approach. In our ap-
proach the energy level displacement of the ground state
of kaonic hydrogen is defined by the amplitude of the reac-
tion K−+ p→ K−+ p, weighted with the wave functions
of kaonic hydrogen in the ground state (3.5). It reads

−ε1s + i Γ1s

2
=

1
4mK−mp

∫
d3k

(2π)3

∫
d3q

(2π)3

×
√

mK−mp

EK−(!k )Ep(!k )

√
mK−mp

EK−(!q )Ep(!q )

×Φ†
1s(!k )M(K−(!q )p(−!q, σp)→

K−(!k )p(−!k, σp))Φ1s(!q ). (7.1)

By virtue of the wave functions Φ†
1s(!k ) and Φ1s(!q ) the

integrand is concentrated around momenta k ∼ 1/aB and

q ∼ 1/aB, where 1/aB = 2.361MeV. Since typical mo-
menta are much less than the masses of coupled particles,
mK− � 1/aB and mp � 1/aB, the zero-momentum limit
k = q = 0 turns out to be a good approximation10. This
results in the well-known DGBT formula

−ε1s + i Γ1s

2
= 2α3µ2 fK

−p
0 (0), (7.2)

where fK
−p

0 (0) is the partial S-wave amplitude of the re-
action K− + p→ K− + p at threshold.

For the description of the amplitude fK
−p

0 (0) we
have suggested the dominance of a smooth elastic back-
ground of low-energyK−p scattering and three resonances
Λ(1405), the SU(3)flavour singlet, and the Λ(1800) and
Σ(1750), the components of the SU(3)flavour octet. These
resonances saturate the part of the amplitude which we
have denoted as fK

−p
0 (0)R (3.10).

The imaginary part of the amplitude fK
−p

0 (0)R is re-
lated to inelastic channels K−p→ Σ−π+, K−p→ Σ+π−,
K−p→ Σ0π0 andK−p→ Λ0π0, which are fully described
by the resonances Λ(1405), Λ(1800) and Σ(1750).

For the analysis of the consistency of our approach,
applied to the description of inelastic channels K−p →
Σ−π+, K−p → Σ+π−, K−p → Σ0π0 and K−p → Λ0π0,
we have used the experimental data γ = 2.360 ± 0.040,
Rn = 0.189±0.015 and Rc = 0.664±0.011 (4.7) on the ra-
tios of the cross-sections for the reactions K−p→ Σ−π+,
K−p→ Σ+π−,K−p→ Σ0π0 andK−p→ Λ0π0. We have
found that in our approach these experimental constraints
are fulfilled within an accuracy better than 6%.

Moreover, we have shown that in our approach be-
tween three parameters γ, Rn and Rc only two parame-
ters are independent. Assuming that these are γ and Rn

we have expressed Rc in terms of γ and Rn. Using the
experimental values for the parameters γ and Rn we have
obtained Rc = 0.626± 0.007 that agrees with experimen-
tal value Rc = 0.664 ± 0.011 within an accuracy better
than 6%. Most likely that the obtained agreement of our
approach with experimental data on γ, Rn and Rc is a
consequence of the SU(3)flavour singlet-octet nature of the
resonances Λ(1405), Λ(1800) and Σ(1750).

One of the consequences of the experimental data (4.7)
on the cross-sections for inelastic channels of low-energy
K−p scattering and the SU(3)flavour singlet-octet nature
of the resonances Λ(1405), Λ(1800) and Σ(1750) is a sup-
pression of the contribution of the Λ(1800)-resonance. In-
deed, due to the experimental constraints (4.7) the ratio
of the coupling constants of the antisymmetric and sym-
metric SU(3)flavour phenomenological B2BP interactions,
α2 = f2/g2, turns out to be very close to −1/3. Since the
coupling constant of the Λ(1800)-resonance with the K̄N
pairs is proportional to (1 + 3α2), it decouples from the
K̄N system for α2 = −1/3.
10 An expansion in powers of the relative momenta should
lead to the corrections of order of powers of α, i.e. the term
of order O(

√
kq) gives a correction of order O(α) and so on,

caused by Coulombic photons. We are planning to analyse
these corrections in our forthcoming publications.
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For the numerical analysis of the amplitude of K−p
scattering near threshold we have used the recommended
values for the masses and total widths of the resonances
Λ(1405) and Σ(1750): mΛ(1405) = 1406MeV, ΓΛ(1405) =
50MeV and mΣ(1750) = 1750MeV and ΓΣ(1750) =
90MeV. This has given the following value of the resonant
part of the amplitude of K−p scattering near threshold:

fK
−p

0 (0)R = (− 0.154±0.009)+i (0.269±0.032) fm. (7.3)
Since the smooth elastic background should be fully real,
the imaginary part of fK

−p
0 (0)R coincides with the imagi-

nary part of the S-wave amplitude fK
−p

0 (0) of K−p scat-
tering near threshold. As a result it should fit the exper-
imental data on the width of the energy level of kaonic
hydrogen in the ground state. Using the DGBT formula,
which is the non-relativistic reduction of our formula (7.1),
we have got the value Γ th

1s = (227± 27) eV fitting well the
mean value of the experimental data by the DEAR Col-
laboration Γ1s = (213± 138) eV [13].

The shift ε1s of the energy level of kaonic hydrogen in
the ground state is defined by the S-wave scattering length
aK

−p
0 of K−p scattering. In our approach aK

−p
0 , the real

part of the amplitude fK
−p

0 (0), is determined by the sum
of the contributions of the resonances and a smooth elastic
background: aK

−p
0 = Re fK−p

0 (0) = Re fK−p
0 (0)R+A

K−p
B .

We have calculated the contribution of the smooth
elastic background within the Effective quark model
with chiral U(3) × U(3) symmetry: AK−p

B = (− 0.328 ±
0.033) fm. This gives the S-wave scattering length aK

−p =
(−0.482±0.034) fm and the shift of the energy level of the
ground state of kaonic hydrogen εth1s = (203±15) eV, which
fits well the experimental data εexp

1s = (183 ± 62) eV by
the DEAR Collaboration [13].

At the hadronic level we have calculated the param-
eter AK−p

B in terms of the contribution coming from
all hadron exchanges taken at leading order in ChPT,
described by Effective Chiral Lagrangians, and scalar
mesons a0(980) and f0(980) having an exotic qqq̄q̄ (or
K̄K molecule) structure. Due to the lack of information
about the a0(980)NN and f0(980)NN coupling constants,
the parameter AK−p

B has been found to be dependent
on an arbitrary parameter ξ. Comparing this expression
with that obtained at the quark level we have estimated
ξ = 1.2± 0.1. Of course, an additional information about
the value of ξ can be extracted from the analysis of the
contributions of the a0(980)- and f0(980)-mesons to the
reactions of the K̄N interaction at transferred momenta
of order of 1GeV.

Thus, in our approach the S-wave amplitude fK
−p

0 (0)
of K−p scattering near threshold is equal to

fK
−p

0 (0) = (−0.482± 0.034)+ i (0.269± 0.032) fm. (7.4)
This leads to the following theoretical prediction for the
energy level displacement of the ground state of kaonic
hydrogen

−εth1s + i
Γ th

1s

2
= (−203± 15) + i (113± 14) eV, (7.5)

which fits well the experimental data by the DEAR Col-
laboration [13]

−εexp
1s + i

Γ exp
1s

2
= (−183± 62) + i (106± 69) eV. (7.6)

The calculation of the partial widths of the radiative decay
channels of pionic and kaonic hydrogen we have carried
out within the soft-pion and soft-kaon technique [48,49]11.
We have shown that for pionic hydrogen the partial width
of the decay Aπp → n+ γ gives the Panofsky ratio

1
P
=

Γ (Aπp → nγ)
Γ (Aπp → nπ0)

= 0.681± 0.048 (7.7)

agreeing well with the experimental value 1/P = 0.647±
0.004 [16].

Unlike pionic hydrogen, where the radiative decay
Aπp → n+ γ gives a contribution of about 65%, the con-
tribution of the radiative decay channels AKp → Λ0 + γ
and AKp → Σ0 + γ is less than 1%. The theoretical pre-
dictions for the sum of the branching ratios of the radia-
tive decay channels of the Λ(1405)-resonance makes up
(0.13± 0.03)% [9,62]12.

Thus, the value of the parameter X, supplemented by
the contribution of the radiative decays of the Λ(1405)-
resonance, does not exceed 1%. Since both theoretical and
experimental accuracy of the definition of the energy level
displacement of the ground state of kaonic hydrogen are
worse than 1%, one can neglect the contribution of the
electromagnetic decay channels of kaonic hydrogen to the
total width Γ1s.

Thus, we can argue that strong low-energy K̄N inter-
actions define fully the experimental value of the energy
level displacement of kaonic hydrogen measured by the
DEAR Collaboration13.

An agreement of our theoretical predictions for the en-
ergy level displacement of the ground state of kaonic hy-
drogen (7.5) with the experimental data by Iwasaki et al.
(the KEK experiment) [66]

−εexp
1s + i

Γ exp
1s

2
= (−323± 63± 11)+ i (204± 104± 50) eV.

(7.8)
seems to be only qualitative.

We would like to emphasize that the new data on
the energy level displacement have been obtained by the
DEAR Collaboration due to a significant improvement of
the experimental technique and methodics of the extrac-
tion of the energy level displacement of kaonic hydrogen
11 A constituent-quark diagram technique for the derivation
of the soft-pion and soft-kaon low-energy theorems has been
elaborated by Natalia Troitskaya in [63] (see also [19,64]).
12 Theoretical and experimental data on the radiative decays
of the Σ(1750)-resonance are absent [9].
13 A tangible contribution of about 50% to the paramter X,
coming from the isospin-breaking and electromagnetic interac-
tions to the amplitude of low-energy K−p scattering through
the intermediate K̄0n state K−p → K̄0n → K−p, has been
recently pointed out by Rusetsky [65].
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from the data on the np→ 1s transitions, where np is an
excited state of kaonic hydrogen [13].

We are grateful to Georgii Shestakov for clarification of ex-
otic properties of the a0(980)- and f0(980)-mesons as the four-
quark (or K̄K molecule) states and John Donoghue for discus-
sions. We appreciate discussions with Jürg Gasser and Akaki
Rusetsky. We thank Torleif Ericson for the discussions of our
approach to the description of the Panofsky ratio for pionic
hydrogen and Evgeni Kolomeitsev for the discussions of low-
energy theorems for K−p scattering. The results obtained in
this paper have been reported at the Workshop on CHIRAL
DYNAMICS at University of Bonn, 8-13 September 2003, Ger-
many and at the Workshop on HADATOM03 at ECT∗ in
Trento, 12-18 October 2003, Italy [14,67].

Appendix A. Calculation of AK
−p
B within

Effective quark model with chiral
U(3) × U(3) symmetry

Using the expression for the external sources ηp(x2) and
η̄p(x3), given by (5.19), and substituting them in (5.22)
we obtain

M(K−p→ K−p) = i
1
4
g2
B g

2
K ε

i ′j ′k ′
εijk

×
∫
d4x1d4x2d4x3 e

i q ′·x1+ip ′·x2−ip·x3 ū(p ′, σ ′ )a(iγ5)a1b1

×(Cγµ)a2b2(γµγ
5)ac2(γνγ

5)c3b(γνC)a3b3(iγ
5)a4b4u(p, σ)b

×〈0|T(ū*(x1)a1s*(x1)b1ui ′(x2)a2uj ′(x2)b2dk ′(x2)c2
×d̄i(x3)c3 ūj(x3)a3 ūk(x3)b3 s̄t(0)a4ut(0)b4)|0〉c, (A.1)

where the index c stands for the abbreviation of connected.
Making contractions of the d- and s-quark field oper-

ators we reduce the r.h.s of (A.1) to the form

M(K−p→ K−p) = i
1
4
g2
B g

2
K ε

ii ′j ′
εijk

×
∫
d4x1d4x2d4x3 e

i q ′·x1+ip ′·x2−ip·x3 ū(p ′, σ ′ )a(iγ5)a1b1

×(Cγµ)a2b2(γµγ
5)ac2(γνγ

5)c3b(γνC)a3b3(iγ
5)a4b4u(p, σ)b

×(−i)S(s)
F (x1)b1a4 (−i)S(d)

F (x2 − x3)c2c3〈0|T(ū*(x1)a1

×ui ′(x2)a2uj ′(x2)b2 ūj(x3)a3 ūk(x3)b3u*(0)b4)|0〉c, (A.2)

The requirement to deal with only connected quark dia-
grams prohibits the contraction of the u-quark field oper-
ators ū*(x1)a1 and u*(0)b4 . The result reads

M(K−p→ K−p) = 3 g2
B g

2
K

×
∫
d4x1d4x2d4x3 e

i q ′·x1+ip ′·x2−ip·x3 ū(p ′, σ ′ )a(γ5)a1b1

× (Cγµ)a2b2(γµγ
5)ac2(γνγ

5)c3b(γνC)a3b3(γ
5)a4b4u(p, σ)b

×S(s)
F (x1)b1a4 S

(d)
F (x2 − x3)c2c3S

(u)
F (x2 − x1)a2a1

×S(u)
F (x2 − x3)b2a3S

(u)
F (−x3)b4b3 . (A.3)

Summing over the indices we end up with the expression

M(K−p→ K−p) = 3 g2
B g

2
K

×
∫
d4x1d4x2d4x3 e

i q ′·x1+ip ′·x2−ip·x3 ū(p ′, σ ′ )γµγ5

×S(d)
F (x2 − x3)γνγ5u(p, σ)tr

{
γ5S

(s)
F (x1)γ5S

(u)
F (−x3)

×CT γTν S
(u)
F (x2 − x3)T γTµC

TS
(u)
F (x2 − x1)

}
. (A.4)

Using the relation

CT γTν S
(u)
F (x2 − x3)T γTµC

T = −γνS(u)
F (x3 − x2)γµ (A.5)

we transcribe the r.h.s. of (A.4) into the form

M(K−p→ K−p) = − 3 g2
B g

2
K

×
∫
d4x1d4x2d4x3 e

i q ′·x1+ip ′·x2−ip·x3 ū(p ′, σ ′ )γµγ5

×S(d)
F (x2 − x3)γνγ5u(p, σ)tr

{
γ5S

(s)
F (x1)γ5S

(u)
F (−x3)γν

×S(u)
F (x3 − x2)γµS

(u)
F (x2 − x1)

}
. (A.6)

In the momentum representation the r.h.s. of (A.6) reads

M(K−p→ K−p) = 3 g2
B g

2
K

∫
d4k1

(2π)4i
d4k2

(2π)4i
ū(p ′, σ ′ )

× γµγ5 1

md − k̂1

γνγ5u(p, σ)tr

{
γ5 1

ms−k̂2

γ5 1

mu−k̂2+q̂

× γν 1

mu − k̂2 − k̂1 + p̂+ q̂
γµ

1

mu − k̂2 + q̂ ′

}
. (A.7)

The result of the calculation of momentum integrals
within the procedure accepted in the Effective quark
model with chiral U(3)× U(3) symmetry [17–19] is equal
to

M(K−p→ K−p) =
g2
B

8π2

〈q̄q〉
F 2
K

µ
ms +m
ms −m

×
[
m2

s Bn
(
1 +

Λ2
χ

m2
s

)
−m2 Bn

(
1 +

Λ2
χ

m2

)]
, (A.8)

where 〈q̄q〉 = −(252.630MeV)3 is the quark condensate,
Λχ = 940MeV is the scale of the spontaneous breaking of
chiral symmetry [17,19]. The parameter AK−p

B is given by

AK−p
B =

M(K−p→ K−p)
8π(mK− +mp)

=
g2
B

64π3

〈q̄q〉
F 2
K

µ

mK− +mp

×ms +m
ms −m

[
m2

s Bn
(
1 +

Λ2
χ

m2
s

)
−m2 Bn

(
1 +

Λ2
χ

m2

)]
=

−0.328 fm. (A.9)

A theoretical accuracy of this result is about of 10% [17–
19] and [55].
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